on May 17th, 2011

This study aims at developing a process technique, which can deposit porous scaffold-like hydroxyapatite (HA) coatings on strong ceramic substrates.

As a first trial, micro-porous HA coatings on strong zirconia-based substrates are fabricated by the following technique—consisting of low-density HA-slip coating-deposition on the micro-porous substrates pre-sintered at 900 °C, and coating-substrate co-sintering at 1300 °C.

The final co-sintering process ensures a strong bonding between the HA coating and the zirconia-based substrate after minimizing the mismatch in thermal expansion coefficients by adding alumina in HA coating and HA in zirconia-based substrate.

The presence of porosity in the HA coating also reduces the mismatch. HA decomposition during the co-sintering process is discussed.

Read More

The latest news

EIT News

How Various Engineering Aspects Help Fuel Space Exploration

Space exploration has revolutionized humanity’s understanding of the universe, thanks to engineering marvels that drive each mission. From spacecraft design to communication systems, engineers are crucial in pioneering the future... Read more
EIT News

Engineering for the Future of Healthcare: Biomedical Innovations

Biomedical engineering is transforming healthcare through innovations like wearable devices and robotic surgery. Discover how engineers are revolutionizing patient care, enhancing diagnostics, and improving treatment outcomes with cutting-edge technologies designed... Read more
EIT News

Great Ways to Manage Health and Safety Risks in Engineering

In the fast-paced world of engineering, managing health and safety risks is not just a regulatory requirement—it’s a moral imperative. From heavy machinery to hazardous materials, the potential dangers are... Read more
Engineering Institute of Technology