on January 19th, 2012

This paper presents an experimental study on effect of high strain rate on compressive behavior of plain and fiber-reinforced high-strength concrete (FRHSC) with strength between 80 and 90 MPa.

A Split Hopkinson pressure bar equipment was used to determine the concrete behavior at strain rates from 40 to 300 s−1. Fracture patterns of the specimens, concrete matrix, and fibers at high strain rates were discussed.

Compressive strength, elastic modulus, critical strain, and toughness of the concrete were increased with strain rate.

Ratios of these properties at high strain rates to their counterparts at static loading were discussed and compared with those recommended by CEB-FIP code.

The CEB-FIP equation can be used but underestimates the dynamic increase factors (DIFs) for compressive strength (DIFfc) for the plain HSC, and it overestimates the DIFfc for the FRHSC.

The CEB-FIP equation generally underestimates the DIF for critical strain (DIFεc1), but overestimates the DIF for elastic modulus (DIFE) for the high-strength concretes.

Read More

The latest news

EIT News

When Nature Inspires Engineers and Architects to Build Green

Explore how termite mounds can inspire architects and engineers to create more efficient and sustainable buildings. This article highlights five innovative ways these natural structures offer lessons for designing the... Read more
EIT News

Mechanical Engineering in Robotics: Challenges and Benefits

Explore the critical role of mechanical engineering in the fast-evolving field of robotics. From navigating intricate challenges to seizing exciting opportunities, this article examines how mechanical engineers are shaping the... Read more
EIT News

Transformative Innovations: Engineers and Process Automation in Mining

As process automation transforms mining, engineers are at the forefront of driving efficiency, safety, and sustainability in the industry. Discover how digital advancements are reshaping mining operations and redefining the... Read more
Engineering Institute of Technology