on April 2nd, 2019

Recycled concrete is a material with the potential to create a sustainable construction industry.

However, recycled concrete presents heterogeneous properties, thereby reducing its applications for some structural purposes and enhancing its application in pavements.

This paper provides an insight into a solution in the deformation control for recycled concrete by adding supplementary cementitious materials fly ash and blast furnace slag. Results of this study indicated that the 50% fly ash replacement of Portland cement increased the rupture modulus of the recycled concrete.

Conversely, a mixture with over 50% cement replacement by either fly ash or slag or a combination of both exhibited detrimental effect on the compressive strength, rupture modulus, and drying shrinkage.

The combined analysis of environmental impacts and mechanical properties of recycled concrete demonstrated the possibility of optimizing the selection of recycled concrete because the best scenario in this study was obtained with the concrete mixture M8 (50% of fly ash + 100% recycled coarse aggregate).

Read More

The latest news

EIT News

A Hero with a Lifesaving Legacy  

Meet James Mackay, the Technology Manager at the Engineering Institute of Technology (EIT), also known as a hero. His journey is nothing short of inspiring, and it's about time the... Read more
EIT News

UAE Floods: Role of Engineers in Cloud Seeding and Climate

The recent downpour in Dubai has raised the question of whether cloud seeding or extreme weather was to blame and what engineering is involved in either scenario. The recent downpour... Read more
EIT News

3D Printing: Technology, Applications, and Future Prospects 

In this insightful blog, we investigate the transformative field of additive manufacturing.   The Engineering Institute of Technology’s (EIT) senior Mechanical Engineering on-campus lecturer and the Doctor of Engineering Research Coordinator, Dr. Vishal... Read more
Engineering Institute of Technology