on July 6th, 2020

Wind Power Plants (WPPs) are generally located in remote areas with weak distribution connections. Hence, the value of Short Circuit Capacity (SCC), WPP size and the short circuit impedance angle ratio (X/R) are all very critical in the voltage stability of a distribution system connected WPP.

This paper presents a new voltage stability model based on the mathematical relations between voltage, the level of wind power penetration, SCC and X/R at a given Point of Common Coupling (PCC) of a distribution network connected WPP. The proposed model introduces six equations based on the SCC and X/R values seen from a particular PCC point.

The equations were developed for two common types of Wind Turbine Generators (WTGs), including: the Induction Generator (IG) and the Double Fed Induction Generator (DFIG).

Taking advantage of the proposed equations, design engineers can predict how the steady-state PCC voltage will behave in response to different penetrations of IG- and DFIG-based WPPs.

In addition, the proposed equations enable computing the maximum size of the WPP, ensuring grid code requirements at the given PCC without the need to carry out complex and time-consuming computational tasks or modelling of the system, which is a significant advantage over existing WPP sizing approaches.

Read More

The latest news

EIT News

When Nature Inspires Engineers and Architects to Build Green

Explore how termite mounds can inspire architects and engineers to create more efficient and sustainable buildings. This article highlights five innovative ways these natural structures offer lessons for designing the... Read more
EIT News

Mechanical Engineering in Robotics: Challenges and Benefits

Explore the critical role of mechanical engineering in the fast-evolving field of robotics. From navigating intricate challenges to seizing exciting opportunities, this article examines how mechanical engineers are shaping the... Read more
EIT News

Transformative Innovations: Engineers and Process Automation in Mining

As process automation transforms mining, engineers are at the forefront of driving efficiency, safety, and sustainability in the industry. Discover how digital advancements are reshaping mining operations and redefining the... Read more
Engineering Institute of Technology