on July 6th, 2020

Wind Power Plants (WPPs) are generally located in remote areas with weak distribution connections. Hence, the value of Short Circuit Capacity (SCC), WPP size and the short circuit impedance angle ratio (X/R) are all very critical in the voltage stability of a distribution system connected WPP.

This paper presents a new voltage stability model based on the mathematical relations between voltage, the level of wind power penetration, SCC and X/R at a given Point of Common Coupling (PCC) of a distribution network connected WPP. The proposed model introduces six equations based on the SCC and X/R values seen from a particular PCC point.

The equations were developed for two common types of Wind Turbine Generators (WTGs), including: the Induction Generator (IG) and the Double Fed Induction Generator (DFIG).

Taking advantage of the proposed equations, design engineers can predict how the steady-state PCC voltage will behave in response to different penetrations of IG- and DFIG-based WPPs.

In addition, the proposed equations enable computing the maximum size of the WPP, ensuring grid code requirements at the given PCC without the need to carry out complex and time-consuming computational tasks or modelling of the system, which is a significant advantage over existing WPP sizing approaches.

Read More

The latest news

EIT News

How Various Engineering Aspects Help Fuel Space Exploration

Space exploration has revolutionized humanity’s understanding of the universe, thanks to engineering marvels that drive each mission. From spacecraft design to communication systems, engineers are crucial in pioneering the future... Read more
EIT News

Engineering for the Future of Healthcare: Biomedical Innovations

Biomedical engineering is transforming healthcare through innovations like wearable devices and robotic surgery. Discover how engineers are revolutionizing patient care, enhancing diagnostics, and improving treatment outcomes with cutting-edge technologies designed... Read more
EIT News

Great Ways to Manage Health and Safety Risks in Engineering

In the fast-paced world of engineering, managing health and safety risks is not just a regulatory requirement—it’s a moral imperative. From heavy machinery to hazardous materials, the potential dangers are... Read more
Engineering Institute of Technology