on December 6th, 2021

Middle size gas/diesel aero-derivative power generation engines are widely used on various industrial plants in the oil and gas industry. Bleed of Valve (BOV) system failure is one of the failure mechanisms of these engines.

The BOV is part of the critical anti-surge system and this kind of failure is almost impossible to identify while the engine is in operation. If the engine operates with BOV system impaired, this leads to the high maintenance cost during overhaul, increased emission rate, fuel consumption and loss in the efficiency.

This paper proposes the use of readily available sensor data in a Supervisory Control and Data Acquisition (SCADA) system in combination with a machine learning algorithm for early identification of BOV system failure.

Different machine learning algorithms and dimensionality reduction techniques are evaluated on real world engine data.

The experimental results show that Bleed of Valve systems failures could be effectively predicted from readily available sensor data.

Read more

The latest news

EIT News

Strength in Unity: The Story of Kliptown’s Recovery and Empowerment

In the face of adversity, the resilience of a community often shines through the collective efforts of its people. One such instance of unity and support occurred during the aftermath... Read more
EIT News

EIT Aussie Student’s Journey Through Industrial Automation

From smelting furnaces to cutting-edge industrial automation systems, Alex Hudson, an EIT student and E&I Technical Officer at GPA Engineering, has navigated a path shaped by hands-on experience and continuous... Read more
EIT News

AI Helps Boost Code Compliance in Construction Engineering

Artificial intelligence (AI) is transforming how engineers ensure buildings meet regulatory standards. By automating compliance checks, AI reduces errors, accelerates the process, and enhances safety. This article examines how this... Read more
Engineering Institute of Technology