Online – Master of Engineering (Industrial Automation)

Course Duration
Duration
  • 24 Months
Course Study
Study Mode
  • Online
  • Online Industrial Automation
Course Location
Location
  • Online
Course Code
Course Code
MIA
Course Intakes
Intakes
  • 6 January 2025
  • 30 June 2025
Course Type
Course Type
  • Masters
  • Industrial Automation, Instrumentation and Process Control
Course Fees
Fees

Course Overview

The objective of this master’s program is to equip students with expertise in Industrial Automation engineering, meeting the increasing demands of industry, including control, instrumentation, communication, machine learning and safety.

The Master’s program is designed to equip students with essential skills for the automation sector, integrating twelve core modules and a project thesis. Targeted at professionals with backgrounds in fields like electrical, electronics, and mechanical engineering, the curriculum includes key subjects such as Power Engineering, Programmable Logic Controllers, and Industrial Process Control Systems, laying a robust foundation in both theory and application.

The course culminates with a Project Thesis, a significant research component that enhances the students’ ability to apply their knowledge creatively and critically. This capstone project fosters independence and innovation, preparing graduates to contribute effectively to the Industrial Automation industry and address complex challenges in their future careers.

Course Benefits: 

  • Well-designed modules and electives to equip you with essential skills and knowledge for achieving career goals in automation.
  • Hands-on experience with industry-standard tools for applications in automation.
  • Insights from industry experts on the latest automation technologies and practices.
  • Capstone project focuses on real-world automation challenges, promoting innovative solutions.
  • Global recognition and career advancement opportunities in the automation industry.

Program Details

The rapid growth of new industries and technologies has led to a global shortage of skilled automation, instrumentation, and control engineers. The Master of Engineering (Industrial Automation) program is tailored to address these needs by providing comprehensive knowledge and skills essential for the industry. It is a comprehensive two-year program that includes 12 units, along with a variety of elective options, each dedicated to crucial aspects of Industrial Automation engineering.

Industrial Automation Introduction provides the fundamental knowledge that is essential in the automation area. Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission, and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions.

Furthermore, Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Instrumented Systems introduces the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Advanced Process Control covers advanced control systems, algorithms, and applications. Machine Learning for Industrial Automation provides the intelligent control basics in the automation area.

The Project Thesis, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

The program is composed of 13 units. These units cover a range of aspects to provide you with maximum practical coverage in the field of Industrial Automation Engineering.

Please refer to the current teach-out program structure here.

Year One

Term Unit Number Module/Unit Name Duration (weeks) Credit Points
Term 1 MIA500A Industrial Automation Introduction 12 3
MIA502A Programmable Logic Controllers 12 3
Term 2 MIA503A Industrial Process Control Systems 12 3
MIA504A Industrial Instrumentation 12 3
Term 3 MIA509A Electrical Engineering for Industrial Automation 12 3
MXX507 Professional Engineering Management 12 3
Term 4 MIA508A Safety Instrumented Systems 12 3
MIA510A Industrial Data Communications 12 3

Year Two

Term 1 Elective 1* Choose any 1 from the following list below 12 3
MIA602A SCADA and Distributed Control Systems 12 3
Term 2 Elective 2* Choose any 1 from the following list below 12 3
MXX601 Engineering Practice and Key Research Methods 12 3
Terms 3/4 ME700 Project Thesis 12 12

*Pool of Elective Units

MIA605A Machine Learning for Industrial Automation 12 3
MIA603A Advanced Process Control 12 3
MME602A Computer Aided Design and Manufacturing 12 3
MME505A Process Engineering 12 3
MME606A Data Analytics for Engineering Applications 12 3
MEE511 Renewable Energy Systems 12 3
MEE606 Substation Design and Automation 12 3
MEE605 Smart Grids 12 3

Additional Mandatory Units

BXX001 Hands-on Workshops 1 1 0
BXX002 Hands-on Workshops 2 1 0
BXX003 Hands-on Workshops 3 1 0
BXX004 Hands-on Workshops 4 1 0
MXX001 Professional Practice Hands-on Workshop 1 0
MXX510 Professional Experience 1 0

  • Demonstrate sound fundamental understanding of the scientific and engineering principles and apply underpinning natural, physical, and engineering sciences, mathematics, statistics, computer, and information sciences to solve problems in Industrial Automation engineering.
  • Apply in-depth as well as broad understanding of the relevant specialist body of knowledge within the Industrial Automation engineering discipline including programming logic controllers; control systems and instrumentation; safety systems; machine learning; Industrial communication, SCADA, and systematic project management.
  • Reflect critically on a broad body of engineering knowledge to plan and execute an Industrial Automation engineering research-based project, with awareness to knowledge development and research direction within the engineering discipline.
  • Draw on the knowledge of engineering design practice and understand the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the Industrial Automation engineering discipline.
  • Apply systematic approaches, design processes and established engineering methods, tools, techniques, and resources, underpinned by hazard and risk framework considerations to conduct and manage Industrial Automation engineering projects.
  • Communicate effectively technical ideas, design concepts or research results to diverse audience.
  • Recognise and pro-actively engage in lifelong learning, as well as develop creative and innovative solutions to engineering problems.
  • Demonstrate professional use and management of information.
  • Apply discipline and professional knowledge and skills to demonstrate autonomy, adaptability, and responsibility as a professional engineer.
  • Collaboratively work as a member of a cross disciplinary team in a manner consistent with ethical and professional standards

Akhlaqur Rahman

(Deputy- Vishal Sharma)

To gain entry into this program, we require applicants to hold:

    1. A recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice; OR
    2. An EIT Bachelor of Science (Engineering) degree* in a congruent** field of practice; OR
    3. A 4-year Bachelor of Engineering qualification (or equivalent) that is recognized under the Washington Accord or by Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee; OR
    4. A 4-year Bachelor of Engineering qualification (or equivalent) * that is not recognized under the Washington Accord, in a congruent** field of practice to this program; AND
    5. An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.

* With integrated compulsory twelve-week professional industry experience, training or project work of which six weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** All applicants must have evidence of automation and/or electrical exposure at undergraduate level and/or work experience. Congruent field of practice means one of the following with adequate Industrial Automation Engineering content including fundamentals of Programming, Control and Instrumentation (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

    • Industrial Automation
    • Industrial Engineering
    • Instrumentation, Control and Automation
    • Mechanical Engineering
    • Mechanical and Material Systems
    • Mechatronic Systems
    • Manufacturing and Management Systems
    • Electrical Engineering
    • Electronic and Communication Systems
    • Chemical and Process Engineering
    • Robotics
    • Production Engineering

Please note: meeting the minimum admission criteria does not guarantee entry to our programs. Applications are assessed on a case-by-case basis.

Please check the Documentation Guidelines for your application.

For full current fees in your country go to the drop down filter at the top of this page or visit the Fees page.

Payment Methods

Learn more about payment methods, including payment terms & conditions and additional non-tuition fees.

Like all Australian higher education providers and universities, EIT programs are accredited by the exacting standards of the Australian Government’s Tertiary Education Quality and Standards Agency (TEQSA).

This master’s degree is fully accredited by Engineers Australia under the Washington Accord. It is internationally recognized under the International Engineering Alliance (IEA) accords and the various signatories.

Find out more about country-specific accreditation and professional recognition.

This course is classified as Level 9 under the Australian Qualifications Framework (AQF).

Potential job roles include engineering and management positions in the following areas of expertise:

  • Process control, commissioning and production management
  • Plant, factory and building automation
  • Programmable Logic Controllers (PLCs), Distributed Control Systems (DCSs) and SCADA
  • Industrial design and consultation
  • Supply chain management, quality assurance, and sales
  • Operations, maintenance, field services, and technical support
  • Controls, instrumentation, and robotics
  • Industrial project management and business development

This course may use the following software:

  • VPLabs v12
  • Codesys Version 3.5.17.0
  • MATLAB (Campus Wide License)
  • Realterm
  • Modbus (Serial and TCP)
  • Wireshark
  • OPC”
  • Open PHA™ – Kenexis
  • Python with Pandas
  • Numpy
  • Matplotlib
  • Scikit-learn
  • Statsmodels, Tensorflow
  • Factory Talk View Studio
  • mod_RSsim
  • WinTr from”
  • PowerFactory
  • LabView

Due to ongoing unit and course reviews, software may change from the list provided. Learn more about the Practical Learning at EIT here

Our master’s degrees take 2 years to complete. The online master’s degrees are delivered on a part-time intensive basis over 2 terms, each of 12 weeks. Part-time students are expected to spend approximately 20 hours per week learning the program material, completing assessments and attending tutorials. After enrolment the maximum time allowed to complete all units is 5 years.

Any student has a right to appeal a decision of the Engineering Institute of Technology (EIT) or any member of the institute’s staff. EIT has a comprehensive Policy on Appeals and Grievances to assist students.

You must submit your application at least four weeks before the start date to be considered for your desired intake.

Hear from our students

  The delivery methodology and the information available in the e-library can’t be beaten. The other important aspect of online education is recorded lectures. You can review the tutorial and lessons on repeat when you need to understand the concept.  
M Masemola, South Africa
  What I liked most about the course and EIT is the flexibility is offered regarding education. It gave me the opportunity to study and work full-time.  
C Groenewald, South Africa
  I enjoyed interacting with students all around the world, and seeing how the principles I have learned applies to them as well.  
S Zeelie, South Africa
  My line of work requires me travel quite often. I could not attend every class due to my remote locations, but still I could recap and stay on top of the study material thanks to the recordings. Also, all the Instructors were world class.  
P Pretorius, South Africa

Helpful Information

Why EIT?

We are one of the only institutes in the world specializing in engineering.

Industry Orientated Programs Icon Industry-Oriented Programs
Leaders in Industry Icon Industry Experienced Lecturers
Australian Accredited Icon World-Class Australian Accredited Education
Technology Careers Unique Delivery Model
Engineering Institute of Technology