

Watch Webinar Recording Here

HVAC System Sizing Based on Computational Fluid Dynamics

5 October 2023 | Technical Topic Webinar

Vijay Kumar Veera M.Phil., M.Tech.

EIT Lecturer and Course Coordinator in Mechanical Engineering

About EIT

We are dedicated to ensuring that you receive a world-class education and gain skills that you can immediately implement in the workforce.

World-Class Australia Accredited Education

Our vocational programs and higher education degrees are registered and accredited by the Australian Government. We have programs that are also recognized under three international engineering accords.

Engineering Specialists

EIT is one of the only institutes in the world specializing in Engineering. We deliver professional certificates, diplomas, advanced diplomas, undergraduate and graduate certificates, bachelor's and master's degrees, and a Doctorate of Engineering.

Industry Experienced Lecturers

Our lecturers are highly experienced engineers and subject specialists with applied knowledge. The technologies employed by EIT, both online and on-campus, enable us to source our lecturers from a large, global pool of expertise.

Industry Oriented Programs

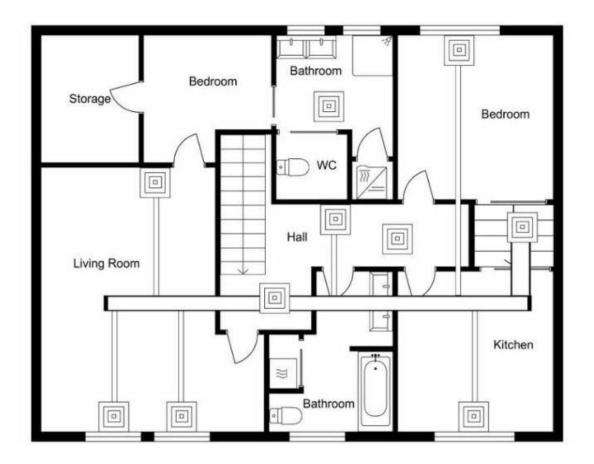
Our programs are designed by industry experts, ensuring you graduate with cutting-edge skills that are valued by employers. Our program content remains current with rapidly changing technology and industry developments.

Unique Delivery Model

We deliver our programs via a unique delivery methodology that makes use of live and interactive webinars, an international pool of expert lecturers, dedicated learning support officers, and state-of-the-art such as hands-on workshops, remote laboratories, and simulation software.

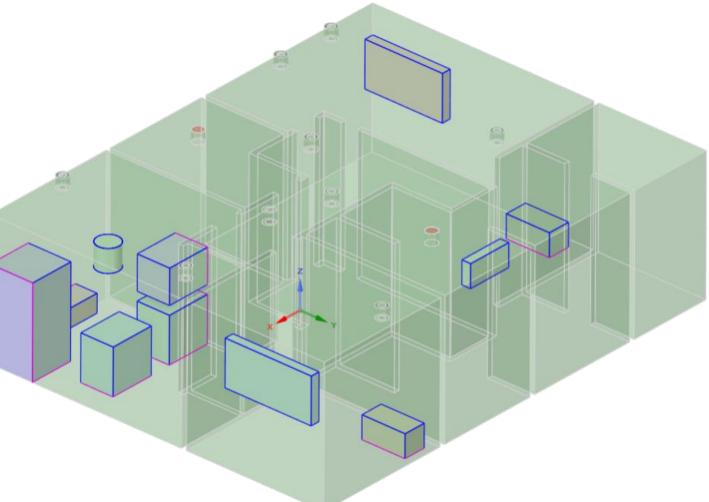
Introduction - Presenter

Vijay Kumar Veera


- Qualified Aerospace Engineer with over 12 years of experience in using CFD methodologies to simulate industrial and academic problems.
- Obtained an M.Phil degree in Engineering from Cambridge University in UK and has M.Tech and B.Tech degrees from Indian Institute of Technology in Bombay and Madras respectively. His expertise is in capturing Fluid flow phenomena using computational methods. He has worked with major organizations in Australia and UK with Red Bull F1, Mercedes F1, Boeing, Airbus, Thales, DSTO, Fisher & Paykel some of the notable clients.
- In his current role as a Unit lecturer and Course Coordinator at EIT, he has been instrumental in developing lecture materials for teaching Advanced fluid dynamics and Aerodynamics units for students pursuing Master of Mechanical Engineering. His passion is in teaching computational fluid dynamic techniques for solving real world problems, which are becoming highly popular with professional engineers wanting to advance their careers to the next level. He is a passionate educator and an advocate for using real world examples in the classroom.

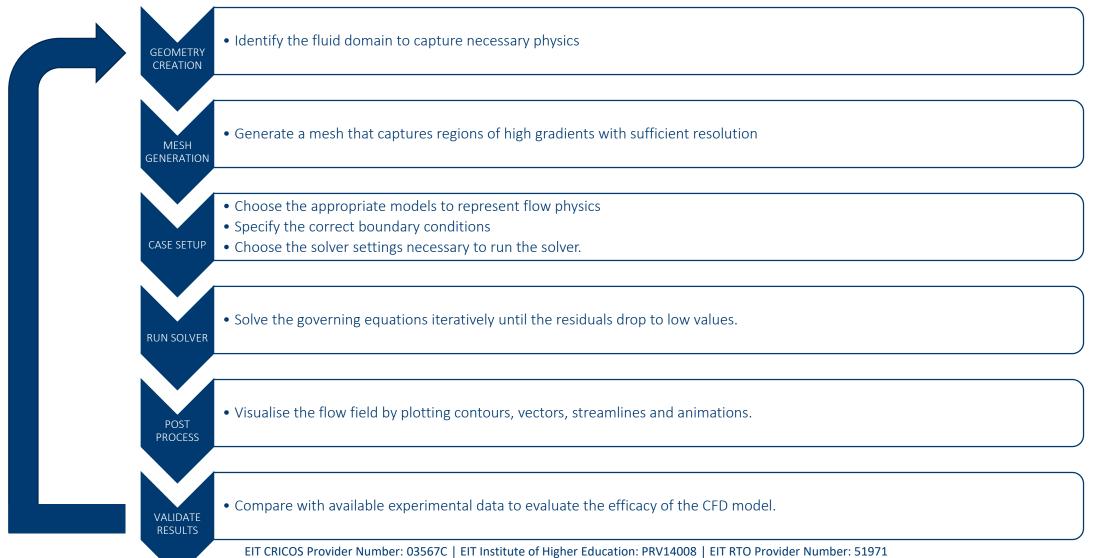
HVAC SYSTEM SIZING THROUGH CFD

PROBLEM STATEMENT

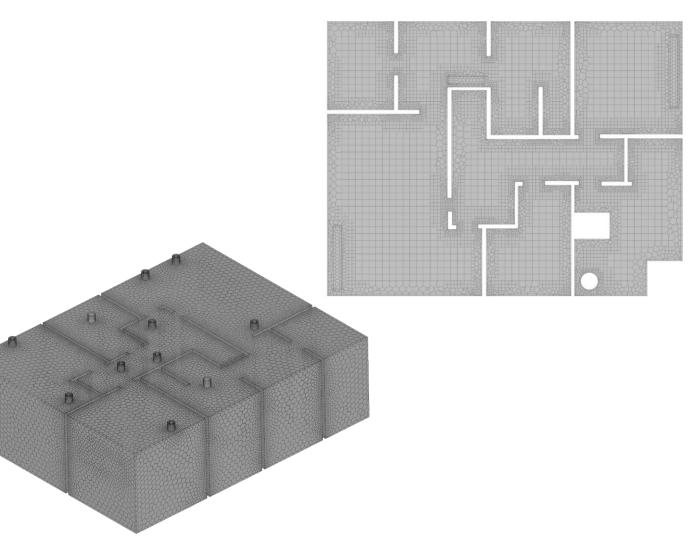

- Conduct a CFD analysis of a typical apartment.
- Include typical sources of heat such as electronic appliances, desktop computers etc.
- Identify regions of high velocity.
- Identify thermal hot spots.
- Evaluate HVAC system efficacy and suggest improvements.

GEOMETRY CREATION

ANSYS SPACECLAIM WORKFLOW


- Create 3D geometry from plan.
- Identify major heat sources. Eg. TV, Fridge, Washing Machine, Desktop etc.
- Create appropriate geometry to model inlets and exhausts.
- Ensure heat sources either coincident with fluid surface or have sufficient distance.

CFD SIMULATION METHODOLOGY

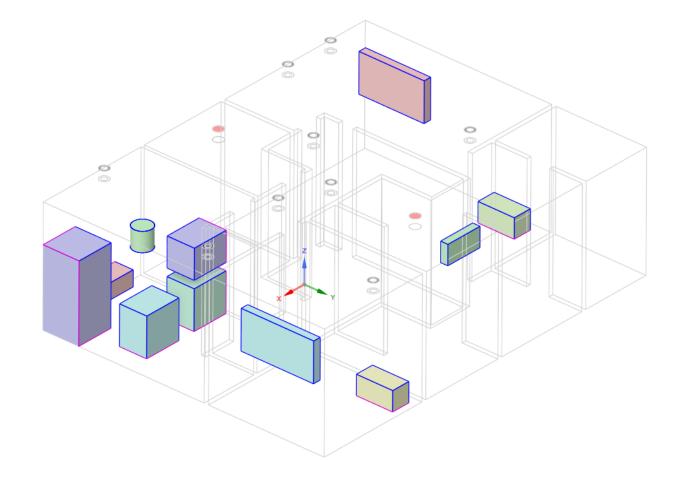


MESH GENERATION

FLUENT WATERTIGHT MESHING WORKFLOW

- Choose appropriate cell sizing to adequately resolve features in the domain.
- Ensure cell sizes resolve any gaps between the apartment walls and the heat sources.
- Assign appropriate cell zone and boundary conditions for easy case setup.
- Use Poly-hexcore methodology for mesh generation.
- Limit cell count to 512000 due to Ansys student constraint.

NUMERICAL MODEL



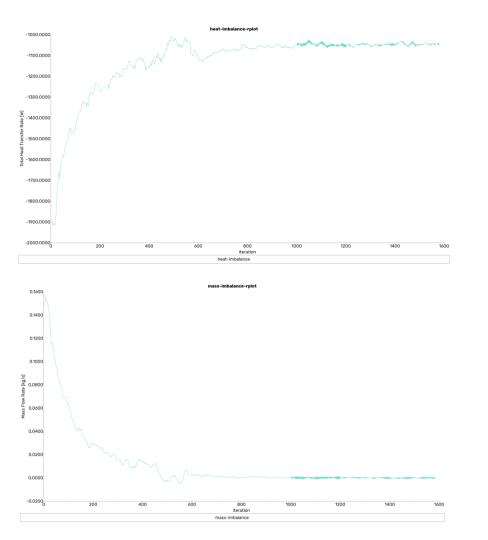
- K-W SST for turbulence closure.
- Gravity vector to capture buoyancy driven flows.
- Energy equation and incompressible ideal gas for density.

• •	 k-eps k-om Trans Trans Trans Reyn Scale Detad 	nar nt-Allmaras (1 eqn) ilon (2 eqn) ega (2 eqn) sition k-kl-omega (3 eqn) sition SST (4 eqn) olds Stress (7 eqn) -Adaptive Simulation (SAS) ched Eddy Simulation (DES) Eddy Simulation (LES)	Model Constants Alpha*_inf 1 Alpha_inf 0.52 Beta*_inf 0.09 a1 0.31 Beta_i (Inner) 0.075	
▼▼▼	 Lamin Spala k-eps k-om Trans Trans Trans Reyn Scale Detact Large k-omega M 	nar nt-Allmaras (1 eqn) ilon (2 eqn) ega (2 eqn) sition k-kl-omega (3 eqn) sition SST (4 eqn) olds Stress (7 eqn) -Adaptive Simulation (SAS) ched Eddy Simulation (DES) Eddy Simulation (LES)	1 Alpha_inf 0.52 Beta*_inf 0.09 a1 0.31 Beta_i (Inner) 0.075	
• •	Spala Spala K-eps K-eps K-om Trans Trans Scale Detac Large k-omega N	nt-Allmaras (1 eqn) ilon (2 eqn) ega (2 eqn) sition k-kl-omega (3 eqn) sition SST (4 eqn) olds Stress (7 eqn) -Adaptive Simulation (SAS) ched Eddy Simulation (DES) e Eddy Simulation (LES)	Alpha_inf 0.52 Beta*_inf 0.09 a1 0.31 Beta_i (Inner) 0.075	
• •	 k-eps k-om Trans Trans Reyn Scale Detac Large k-omega N 	ilon (2 eqn) ega (2 eqn) sition k-kl-omega (3 eqn) sition SST (4 eqn) olds Stress (7 eqn) -Adaptive Simulation (SAS) ched Eddy Simulation (DES) e Eddy Simulation (LES)	0.52 Beta*_inf 0.09 a1 0.31 Beta_i (Inner) 0.075	
 ▼ ▼ ▼ ▼ 	k-om Trans Trans Trans Reyn Scale Detac Large k-omega N	ega (2 eqn) sition k-kl-omega (3 eqn) sition SST (4 eqn) olds Stress (7 eqn) - Adaptive Simulation (SAS) ched Eddy Simulation (DES) e Eddy Simulation (LES)	Beta*_inf 0.09 a1 0.31 Beta_i (Inner) 0.075	
] • • •	O Trans O Trans O Reyn O Scale O Detac O Large	sition k-kl-omega (3 eqn) sition SST (4 eqn) olds Stress (7 eqn) - Adaptive Simulation (SAS) ched Eddy Simulation (DES) e Eddy Simulation (LES)	0.09 a1 0.31 Beta_i (Inner) 0.075	
▼▼▼	O Trans O Reyn O Scale O Detad O Large k-omega M	sition SST (4 eqn) olds Stress (7 eqn) Adaptive Simulation (SAS) ched Eddy Simulation (DES) e Eddy Simulation (LES)	0.09 a1 0.31 Beta_i (Inner) 0.075	
• • •	O Reyn O Scale O Detad O Large k-omega M	olds Stress (7 eqn) -Adaptive Simulation (SAS) ched Eddy Simulation (DES) e Eddy Simulation (LES)	0.31 Beta_i (Inner) 0.075	
· ·	O Scale O Detad O Large k-omega M	-Adaptive Simulation (SAS) ched Eddy Simulation (DES) e Eddy Simulation (LES)	Beta_i (Inner) 0.075	
•	O Detao O Large k-omega M	ched Eddy Simulation (DES) Eddy Simulation (LES)	0.075	
•	k-omega N		0.075	
•		1odel		
		louel	Beta_i (Outer)	
			0.0828	
	O GEKO			
				>
		Material Type		Order Materials by
		fluid	-	Name
		Fluent Fluid Materials		O Chemical Formula
		air	-	Fluent Database
				Filleni Dalabase
			-	GRANTA MDS Database
				User-Defined Database
Density [[kg/m³] inco	ompressible-ideal-gas	Edi	t]
	//1			
ecilic neat) [J/	/(kg k)] con	stant	Ea	<u> </u>
	100)6.43		
onductivity [W		stant	▼ Edi	
onducantly [11]		Stant		
	0.0	242		
Viscosity [kg	ı/(m s)] con	stant	▼ Edi	
	1.7	894e-05		
1	<i>n</i> 17			
C	ecific Heat) [] onductivity [W Viscosity [kg	Density [kg/m³] inco ecific Heat) [J/(kg K)] con 100 onductivity [W/(m K)] con 0.0 Viscosity [kg/(m s)] con 1.7		fluid Fluent Fluid Materials air Mbture none Density [kg/m³] incompressible-ideal-gas ecific Heat) [J/(kg K)] constant 1006.43 onductivity [W/(m K)] constant 0.0242 Viscosity [kg/m s)] constant incompressible-ideal-gas

BOUNDARY CONDITIONS

- Volumetric sources responsible for heat generation. Create heat in the apartment.
- Inlets provide cold air to room to absorb heat generated.
- Outlets means for used air to exit the apartment.

SOLUTION METHODS

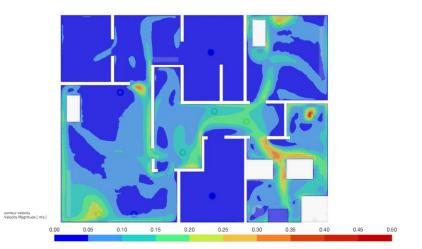

- Second order discretisation for transport variables.
- Coupled scheme for pressure-velocity equations.
- Pseudo-transient time step.

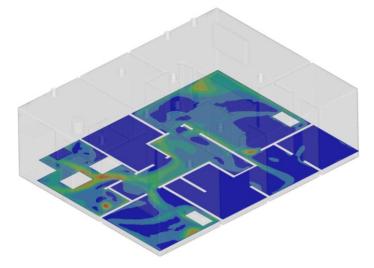
Solution Methods	Solution
Pressure-Velocity Coupling	Pseudo T
Scheme	Pressure
Coupled	▼ 0.5
	0.5
Rhie-Chow: momentum based 🔻 🗹 Auto Se	Density
Spatial Discretization	1
Gradient	Body Fo
Least Squares Cell Based	- Turbuler
	0.75
Pressure	Specific
Second Order	• 0.75
Momentum	Turbuler
Second Order Upwind	-
Turbulent Kinetic Energy	Energy Run Calcu
First Order Upwind	-
Specific Dissipation Rate	
First Order Upwind	Pseudo Tir Fluid Tim
	Time Ste
Energy	
Second Order Upwind	Aggress
Pseudo Time Method	Solid Tim Time Ste
Global Time Step	 Automat
	Parameter
	Number o 1000
	Profile Up 1
	Solution Pr Statistics
✓ Warped-Face Gradient Correction	Data
High Order Term Relaxation	
Default	Solution Ar

Solution Controls					
Pseudo Time Explicit Relaxation Factors					
Pressure					
0.5					
Momentum					
0.5					
Density					
Body Forces					
Turbulent Kinetic Energy					
0.75					
Specific Dissipation Rate					
0.75					
Turbulent Viscosity					
1					
Energy Run Calculation					
Run Calculation					
Check Case Update Dynamic Mesh					
Pseudo Time Settings					
Fluid Time Scale					
Time Step Method Time Scale Factor					
Automatic					
Length Scale Method Verbosity					
Aggressive 🔻 0 🗘					
Solid Time Scale					
Time Step Method Time Scale Factor					
Parameters					
Number of Iterations Reporting Interval					
Profile Update Interval					
Solution Processing					
Statistics					
Data Sampling for Steady Statistics					
Data File Quantities					
Solution Advancement					
Calculate					

SOLUTION MONITORING

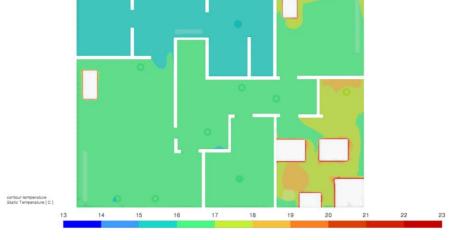
- Create "Solution monitors" to track quantities of interest in the simulation. Eg. Average exit temperature, Average velocity at areas of interest.
- Track residuals to ensure they drop by atleast 3 orders of magnitude.

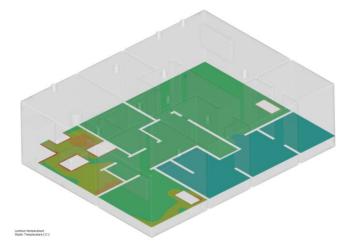




VELOCITY CONTOURS

- Velocity contours useful to identify areas of faster airflow.
- Regions with lower airflow expected to be poorly ventilated.

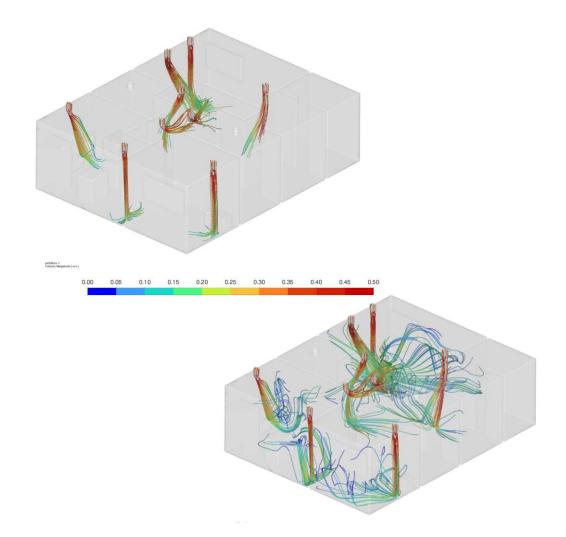




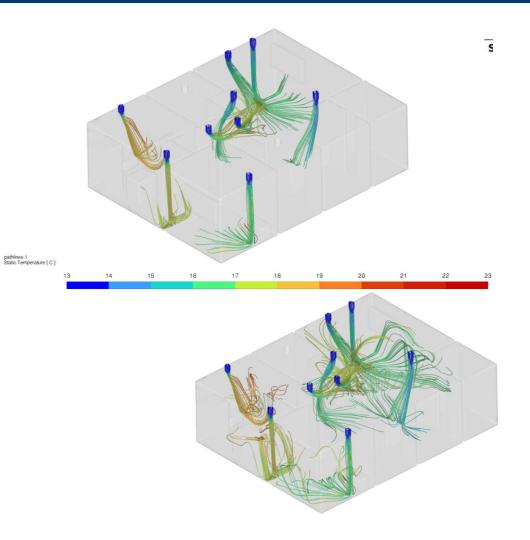
Identify warmer regions and

- potential hotspots.
- Provide advice to adjust supply and return locations to improve temperature uniformity.

TEMPERATURE CONTOURS



VELOCITY STREAMLINES


 Velocity streamlines indicate regions where jet penetration is sub-optimal.

TEMPERATURE STREAMLINES

 Temperature streamlines help differentiate warmer regions from the cooler ones.

SUMMARY AND CONCLUSIONS

- Brief introduction to analysis of apartment HVAC systems through CFD.
- Visualised flow patterns to identify areas with higher velocities and thermal hotspots through CFD.
- Evaluate efficacy of the HVAC system in ventilating the space.
- Setting an exhaust in the kitchen a possible solution to reduce temperatures in the kitchen.
- More cost-effective than conducting experimental analysis.

Hongjun, R. and Dimitri, M., 2005. Preliminary Design of a 2D Supersonic Inlet to Maximize Total Pressure Recovery; In AIAA 5th ATIO and 16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences pp. 3-5.

Thank you!

Upcoming Courses

We have a range of courses in Mechanical Engineering.

Courses	Start Date
52884WA Advanced Diploma of Mechanical Engineering Technology	16 October 2023
Graduate Diploma of Engineering (Mechanical)	2 January 2024
Graduate Certificate in Mechanical Engineering	2 January 2024
Online – Master of Engineering (Mechanical)	2 January 2024
Professional Certificate of Competency in Mechanical Engineering	23 January 2024
Undergraduate Certificate in Engineering Foundations	12 February 2024
Undergraduate Certificate in Mechanical Engineering	12 February 2024
Online – Bachelor of Science (Mechanical Engineering)	12 February 2024
Professional Certificate of Competency in Vibration Analysis, Balancing, Alignment, Predictive and Precision Maintenance of Machinery	13 February 2024
Doctor of Engineering	13 February 2024
Find MORE courses here: www.eit.edu.au/study-areas/mechanical-engineering/	

Upcoming Webinars

All upcoming Events & Webinars: www.eit.edu.au/news-events/events/

Low Voltage Design: Coordinating With Others 11 Oct 2023

Low Voltage Design: Maximum Demand 18 Oct 2023

EIT Virtual Open Week 2023 23 Oct 2023

Certificate of Attendance

To receive your digital certificate of attendance for participating in this webinar, please fill out the form and survey here (or scan the QR Code):

Kindly note that this form will close on Sunday, 8 October 2023 and no further requests for certificates will be accepted after the form has closed

Engineering Institute of Technology.

Website www.eit.edu.au

Head Office 1031 Wellington Street West Perth Perth, WA 6005

Phone Inside Australia: 1300 138 522 Outside Australia: +61 8 9321 1702

Email webinars@eit.edu.au

Courses https://www.eit.edu.au/schedule/