Engineering Institute of Technology


Unit Name


Unit Code

BIA 204S


Unit Duration



Bachelor of Science (Engineering)


Duration 3 years

Year Level


Unit Creator/Reviewer






BSC102C, BIA108S

Credit Points



Total Program Credit Points 81 (27 x 3)

Mode of Delivery

Online or On-campus

Unit Workload

(Total student workload including “contact hours” = 10 hours per week)

Pre-recordings / Lecture – 1.5 hours Tutorial – 1.5 hours

Guided labs / Group work / Assessments – 2 hours

Personal Study recommended - 5 hours

Unit Description and General Aims

The objective in presenting this unit is to impart to students relevant knowledge of the essential supporting infrastructure and systems of industrial and other enterprises. The subject matter covered in this unit will include the basic principles of: earthing, shielding, and cabling best practices; power generation and distribution; and, motor technology – protection, control, and maintenance. Power generation will be examined by means of boiler operation and control. The fundamentals of power distribution will be examined through a detailed evaluation of means of cabling, transformers, earthing, and distribution simulations. The unit further provides the student with the knowledge of boiler processes and control functions, along with the related instrumentation.


Learning Outcomes

On successful completion of this Unit, students are expected to be able to:

  1. Evaluate the basic principles of EMI/EMC problem identification, design, and prevention.

  2. Detail earthing and shielding principles, procedures and practices.

  3. Evaluate the principles of power distribution systems and system components.

  4. Examine in detail, the protection, control and maintenance aspects of electric motors.

  5. Evaluate boiler processes and control functions and related instrumentation.

Professional Development

Completing this unit may add to students professional development/competencies by:

  1. Fostering personal and professional skills and attributes in order to:

    1. Conduct work in a professionally diligent, accountable and ethical manner.

    2. Effectively use oral and written communication in personal and professional domains.

    3. Foster applicable creative thinking, critical thinking and problem solving skills.

    4. Develop initiative and engagement in lifelong learning and professional development.

    5. Enhance collaboration outcomes and performance in dynamic team roles.

    6. Effectively plan, organise, self-manage and manage others.

    7. Professionally utilise and manage information.

    8. Enhance technologist literacy and apply contextualised technologist skills.

  2. Enhance investigatory and research capabilities in order to:

    1. Develop an understanding of systematic, fundamental scientific, mathematic principles, numerical analysis techniques and statistics applicable to technologists.

    2. Access, evaluate and analyse information on technologist processes, procedures, investigations and the discernment of technologist knowledge development.

    3. Foster an in-depth understanding of specialist bodies of knowledge, computer science, engineering design practice and contextual factors applicable to technologists.

    4. Solve basic and open-ended engineering technologist problems.

    5. Understand the scope, principles, norms, accountabilities and bounds associated with sustainable engineering practice.

  3. Develop engineering application abilities in order to:

    1. Apply established engineering methods to broadly-defined technologist problem solving.

    2. Apply engineering technologist techniques, tool and resources.

    3. Apply systematic technologist synthesis and design processes.

    4. Systematically conduct and manage technologist projects, work assignments, testing and experimentation.

Engineers Australia

The Australian Engineering Stage 1 Competency Standards for Engineering Technologists, approved as of 2013. This table is referenced in the mapping of graduate attributes to learning outcomes and via the learning outcomes to student assessment.


Stage 1 Competencies and Elements of Competency


Knowledge and Skill Base


Systematic, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.


Conceptual understanding of the, mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.


In-depth understanding of specialist bodies of knowledge within the technology domain.


Discernment of knowledge development within the technology domain.


Knowledge of engineering design practice and contextual factors impacting the technology domain.


Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the technology domain.


Engineering Application Ability


Application of established engineering methods to broadly-defined problem solving within the technology domain.


Application of engineering techniques, tools and resources within the technology domain.


Application of systematic synthesis and design processes within the technology domain.


Application of systematic approaches to the conduct and management of projects within the technology domain.


Professional and Personal Attributes


Ethical conduct and professional accountability.


Effective oral and written communication in professional and lay domains.


Creative, innovative and pro-active demeanour.


Professional use and management of information.


Orderly management of self and professional conduct.


Effective team membership and team leadership.

Graduate Attributes

Successfully completing this Unit will contribute to the recognition of attainment of the following graduate attributes aligned to the AQF Level 7 criteria, Engineers Australia Stage 1 Competency Standards for Engineering Technologists and the Sydney Accord:


Graduate Attributes

(Knowledge, Skills, Abilities, Professional and Personal Development)

EA Stage 1 Competencies

Learning Outcomes

A. Knowledge of Science and Engineering Fundamentals

A1. Breadth of knowledge of engineering and systematic, theory-based understanding of underlying principles, and depth of knowledge across one or more engineering sub- disciplines


1.1, 1.3


1, 2, 3, 4, 5

A2. Knowledge of mathematical, statistical and computer sciences appropriate for engineering technology




1, 5

A3. Discernment of knowledge development within the technology domain


2, 4, 5

A4. Knowledge of engineering design practice and contextual factors impacting the technology domain





B. Problem Solving, Critical Analysis and Judgement

B1. Ability to research, synthesise, evaluate and innovatively apply theoretical concepts, knowledge and approaches across diverse engineering technology contexts to effectively solve engineering problems


1.4, 2.1, 2.3



B2. Technical and project management skills to design complex systems and solutions in line with developments in engineering technology professional practice


2.1, 2.2, 2.3, 3.2


C. Effective Communication

C1. Cognitive and technical skills to investigate, analyse and organise information and ideas and to communicate those ideas clearly and fluently, in both written and spoken forms appropriate to the audience




1, 4

C2. Ability to engage effectively and appropriately across a diverse range of cultures



D. Design and Project Management

D1. Apply systematic synthesis and design processes within the technology domain

2.1, 2.2, 2.3


D2. Apply systematic approaches to the conduct and management of projects within the technology domain




3, 5

E. Accountability, Professional and Ethical Conduct

E1. Innovation in applying engineering technology, having regard to ethics and impacts including economic; social; environmental and sustainability


1.6, 3.1, 3.4


E2. Professional conduct, understanding and accountability in professional practice across diverse circumstances including team work, leadership and independent work


3.3, 3.4, 3.5, 3.6



Unit Competency and Learning Outcome Map

This table details the mapping of the unit graduate attributes to the unit learning outcomes and the Australian Engineering Stage 1 Competency Standards for the Engineering Technologist.




Graduate Attributes














Engineers Australia Stage 1 Competency Standards for Engineering Technologist

























































































































































































Unit Learning Outcomes
















































Student assessment

Assessment Type

When assessed

Weighting (% of total unit marks)

Learning Outcomes Assessed


Assessment 1

Type: Multi-choice test / Group work / Short answer questions / Practical / Remote Lab / Simulation

Example Topic: Shielding, EMC/EMI, noise, Earthing, PCB.

Students may complete a quiz with MCQ type answers and solve some simple equations to demonstrate a good understanding of the fundamental concepts


Week 3




1, 2


Assessment 2

Type: Multi-choice test / Group work / Short answer questions / Practical / Remote Lab / Simulation

Example Topic: Power distribution fundamentals, short circuits, switchgear, power cables, transformers.

Students may provide solutions to simple problems on the listed topics


Week 6






Assessment 3

Type: Multi-choice test / Group work / Short answer questions / Practical / Remote Lab / Simulation / Project

/ Report

Example Topic: Motor protection, control and maintenance.

Students may complete a quiz with MCQ type answers or solve some simple problems or using software to complete a practical.


Week 10






Assessment 4

Type: Examination Example Topic: All topics

An examination with a mix of detailed report type questions and/or simple numerical problems to be completed in 3 hours


Final Week




1 to 5


Attendance / Tutorial Participation

Example: Presentation, discussion, group work, exercises, self-assessment/reflection, case study analysis, application.



1 to 5

Prescribed and Recommended Readings




IDC Technologies, Practical Electrical Wiring Standards (AS 3000:2007), IDC Technologies, Perth.

IDC Technologies, Safe Operation & Maintenance of Circuit Breakers and Switchgear, IDC Technologies, Perth.

IDC Technologies,Troubleshooting, Maintenance & Protection of AC Electrical Motors and Drives, IDC Technologies, Perth.


Notes and Reference texts

IDC notes and Reference texts as advised Other material advised during the lectures Knovel library:


Unit Content

One topic is delivered per contact week, with the exception of part-time 24-week units, where one topic is delivered every two weeks.

Topics 1 and 2


Practical Shielding, EMC/EMI, Noise Reduction, Earthing, and Circuit Board Layout of Electronic Systems

  1. Fundamentals of EMI (electromagnetic field theory, coupling modes, sources of transients, Fourier representation of EMI)

  2. Earthing and shielding principles and practices (LF magnetic shielding, gaskets and sealing, PCB shielding, safety and signal grounds)

  3. Cables, connectors and circuits (noise, cable parameters, routing, screening and connectors, stray capacitance and lead inductance)


Topics 3 and 4


Power Distribution – Part 1


  1. Power distribution fundamentals (equipment, voltage improvement)8

  2. Short circuits (common faults, calculations)

  3. Switchgear – medium voltage (Parameters and operating characteristics, isolators/connectors, circuit breakers, insulation types)

  4. Power cables (cable types, losses, voltage drops, installation, faults)


Topics 5 and 6


Power Distribution – Part 2

  1. Power transformers (winding connection, earthing, protection and faults)

  2. Power Factor (concepts, improvement methods)

  3. Power factor improvement (shunt and series capacitors, shunt reactors, and etc.)

  4. Earthing (principles, safety, lighting, and surge mitigation)

  5. Distribution simulations (load flow studies, transformer and feeder cable sizing, fault current, motor starting currents)


Topics 7, 8, 9


Motor Protection, Control, and Maintenance


  1. Electric motors (motor technology and construction, three-phase induction motors, energy losses and efficiency)

  2. Control and protection (control basics, motor protection, AC variable speed drives)

  3. Management and maintenance (installation procedures, fault finding)


Topics 10 and 11


Boiler Control and Instrumentation


  1. Boiler processes and control functions (input/output variables, control functions, furnace air and draft controls, hazards)

  2. Boiler control functions (drum level measurement, control and protection, combustion controls, pressure controls, steam temperature controls, burner management systems)


Topic 12

Project and Course Review

In the final week students will have an opportunity to review the contents covered so far. Opportunity will be provided for a review of student work and to clarify any outstanding issues.