Course at a Glance
Code: MME
Course Length: 2 Years

EIT Stock Image

In this accredited and prestigious LIVE ONLINE program, you will gain:

  • Skills and know-how in the latest and developing technologies in mechanical engineering
  • Practical guidance and feedback from mechanical experts from around the world
  • Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
  • Credibility and respect as the local mechanical expert in your firm
  • Global networking contacts in the industry
  • Improved career choices and income
  • A valuable and accredited Master of Engineering (Mechanical)** qualification


The Engineering Institute of Technology is pleased to bring you the Master of Engineering (Mechanical)** program.
 

 

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is an academically accredited program by the Australian Government agency (TEQSA) and does not currently offer entry-to-practice to Engineers Australia - Professional Engineering status. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). The outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this. However, it is recommended that you directly approach your local professional engineering body for an individual assessment and/or recognition.

For more information please visit: https://www.eit.edu.au/accreditation-international-standing-for-online-engineering-training.

 

Course Details

Overview

The Master of Engineering (Mechanical) addresses the specific core competencies and associated underpinning knowledge required of Mechanical, Design, and Maintenance Engineers. The program offers twelve units and a project thesis to provide the knowledge and skills required to become professional and self-confident mechanical engineers. Students with a background in mechanical, instrumentation & control, electrical, or industrial plant and systems engineering will especially benefit from this program as it prepares them for further career development in the mechanical design and maintenance industries.

The aim of this master program is to provide students with skills in mechanical engineering technology and maintenance and to take advantage of the growing needs of the mechanical industry.

The Materials unit will teach students knowledge and applications of traditional and new-age materials. The Heat Transfer unit provides the knowledge base every mechanical engineer must possess in this area. Industrial Hydraulics and Pneumatics covers the theory, applications and maintenance of these systems. The Drives, Pumps and Compressors unit studies topics ranging from bearings, gears, to details on pumps and compressor technology. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Gas Turbines, the new vital prime movers, will be covered in all their facets. Computer Aided Design and Manufacturing looks at using CAD systems to design and model 3D mechanical systems – from parts to assemblies. Finite element analysis is an effective tool for mechanical design. Advanced Fluid Dynamics will concentrate on applications that every mechanical engineer handling processes should be competent in. Tribology, the study of friction, wear and lubrication, is of vital importance in mechanical engineering.

This program has been carefully designed to accomplish three key goals. First, a set of fundamental concepts is described in useful, manageable ways that encourage rapid and integrated knowledge-acquisition. Second, that knowledge is applied in creative and imaginative ways to afford practical, career-oriented advantages. Third, the learning that results from the integration of knowledge and application is emboldened by activities and projects, culminating in a project thesis that is the capstone of the program. This carefully designed learning journey will develop factual understanding and also exercise participants' creativity and design-thinking capabilities. Employers are hungry for these skills, and program graduates can expect a significant advantage when interacting with employers, clients, consultants and fellow engineering peers.

 

Entry Requirements - Master of Engineering (Mechanical Engineering)

To gain entry into this program, applicants need one of the following:

a) a recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice.

b) an EIT Bachelor of Science (Engineering) degree in a congruent** field of practice.

c) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee.

d) a 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.HE

* With integrated compulsory 12-week professional industry experience, training or project work of which 6 weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Mechanical Engineering content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

  • Mechanical Engineering
  • Mechanical and Material Systems
  • Mechatronic Systems
  • Production Engineering
  • Robotics
  • Manufacturing and Management Systems
  • Industrial Automation Engineering
  • Instrumentation, Control and Automation


Note: If applicants do not meet the above requirements, applicants are welcome to apply in writing to the Admissions Committee.

Maths Bridging Test/Exam

Maths bridging test/exam (non-proctored/invigilated): to be completed by all Higher Education students (online and on-campus) during orientation week, to be administered through Moodle. If a student fails the initial test they must complete EIT’s 3 week bridging course (online) and then take the test again (non-proctored/invigilated). If the student fails again they will be considered a student at risk and managed in accordance with EIT’s Student at Risk policy.

Who Will Benefit from this Prestigious Program

This course is highly recommended for those students who have practical experience in mechanical engineering, including but not limited to:

  • Mechanical engineers

  • Mechanical equipment sales engineers

  • Contract and asset managers

  • Automotive engineers

  • Aeronautical engineers

  • Plant operations and maintenance personnel

  • Design engineers

  • Process engineers

  • Process control engineers and supervisors


Program Structure

Students must complete 48 credit points comprising 12 core units and one (1) capstone Thesis. There are no electives in this program. The program duration is two years full time, or equivalent. Subjects will be delivered over four (4) terms per year, and students will take 2 subjects per term. There will be a short break between years.
 

Year Term   Unit Code Subjects Credit Points
Year 1 Term 1 MME501
MME502

Materials for Engineers
Heat Transfer
 
3
3
Year 1 Term 2 MME503
MME504

Industrial Hydraulics and Pneumatics
Drives, Pumps and Compressors
 
3
3
Year 1 Term 3 MME505
MXX507

Process Engineering
Professional Engineering Management
 
3
3
Year 1 Term 4 MME506
MME508
 
Advanced Fluid Dynamics
Industrial Gas Turbines
 
3
3
Year 2 Term 1 MXX501/601
MME602
 
Engineering Practice and Key Research Methods
Computer Aided Design and Manufacturing
 
3
3
Year 2 Term 2 MME603
MME604
 
Finite Element Method
Introduction to Aerodynamics
 
3
3
Year 2 Term 3 & 4 ME700
Project Thesis (taken over 2 terms
 
12

 
* Graduate Diploma of Engineering (Mechanical): Students who elect to exit the program after successfully completing all of the first year units, as outlined above, can opt to receive EIT's Graduate Diploma of Engineering (Industrial Automation). If students wish to finalize the Master qualification after exiting at Grad Dip level, they will need to re-enrol and relinquish the Graduate Diploma testamur.


Live Webinars

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. Please refer to ‘When will the sessions take place?’ in the Frequently Asked Questions. All you need to participate is an adequate Internet connection, speakers and, if possible, a microphone. The software package and setup details will be sent to you prior to the first webinar.

 

Learning and Teaching

Benefits of eLearning to Students

  • Cost effective: no travel or accommodation necessary
  • Interactive: live, interactive sessions let you communicate with your instructor and fellow students
  • Flexible: short interactive sessions over the Internet which you can attend from your home or office. Learn while you earn!
  • Practical: perform exercises by remotely accessing our labs and simulation software
  • Expert instructors: instructors have extensive industry experience; they are not just 'academics'
  • No geographical limits: learn from any location, all you need is an Internet connection
  • Constant support: from your instructor(s) and a dedicated Learning Support Officer for the complete duration of the course
  • International insight: interact and network with participants from around the globe and gain valuable insight into international practice 


Benefits of eLearning to Employers

  • Lower training costs: no travel or accommodation necessary
  • Less downtime: short webinars (60-90 minutes) and flexible training methods means less time away from work
  • Retain employees: keep staff who may be considering a qualification as full time study
  • Increase efficiency: improve your engineering or technical employees’ skills and knowledge
  • International insight: students will have access to internationally based professional instructors and students

 

How Does it Work?

EIT eLearning courses involve a combination of live, interactive sessions over the Internet with a professional instructor, set readings, and assignments. The courses include simulation software and remote laboratory applications to let you put theory to practice, and provide you with constant support from a dedicated Learning Support Officer.


Practical Exercises and Remote Laboratories

As part of the groundbreaking new way of teaching, our online engineering courses use a series of remote laboratories (labs) and simulation software, to facilitate your learning and to test the knowledge you gain during your course. These involve complete working labs set up at various locations of the world into which you will be able to log to and proceed through the various practical sessions.

These will be supplemented by simulation software, running either remotely or on your computer, to ensure you gain the requisite hands-on experience. No one can learn much solely from lectures, the labs and simulation software are designed to increase the absorption of the materials and to give you a practical orientation of the learning experience. All this will give you a solid, practical exposure to the key principles covered and will ensure that you obtain maximum benefit from your course.

 

Brochure

Brochure

To access the detailed program brochure, please complete this form.

 

The Engineering Institute of Technology (EIT) is dedicated to ensuring our students receive a world-class education and gain skills they can immediately implement in the workplace upon graduation. Our staff members uphold our ethos of honesty and integrity, and we stand by our word because it is our bond. Our students are also expected to carry this attitude throughout their time at our institute, and into their careers.