Course at a Glance
Code: CEY2
Course Length: 3 Months

In this interactive 3 month LIVE ONLINE course, you will learn how to:

  • Perform the design of substation earthing so as to ensure safety of personnel and equipment under all conditions
  • Design appropriate protection against the direct and indirect effects of lightning strikes on substations and the incoming/outgoing overhead lines
  • Select and apply appropriate power system protection to protect equipment and personnel from abnormal system conditions including short circuits and earth faults
  • Determine the auxiliary power requirements and perform sizing calculations for the battery backup of essential dc power supply
  • Understand the requirements for site preparation, foundations, structures, cable trenches and draining arrangements to effectively coordinate with design teams of related disciplines
  • Select and apply gas insulated switchgear if outdoor type HV substations cannot be used due to any site-related constraints and adjust the other design elements to suit this option

 

 

Want a COMPLETE understanding of Substation Design?

If the answer is yes, then you should also apply for the Professional Certificate of Competency in Substation Design (Main Equipment).

 

Course Details

Learning and Teaching

Benefits of Online Learning to Students

  • Cost effective: no travel or accommodation necessary
  • Interactive: live, interactive sessions let you communicate with your instructor and fellow students
  • Flexible: short interactive sessions over the Internet which you can attend from your home or office. Learn while you earn!
  • Practical: perform exercises by remotely accessing our labs and simulation software
  • Expert instructors: instructors have extensive industry experience; they are not just 'academics'
  • No geographical limits: learn from any location, all you need is an Internet connection
  • Constant support: from your instructor(s) and a dedicated Learning Support Officer for the complete duration of the course
  • International insight: interact and network with participants from around the globe and gain valuable insight into international practice 


Benefits of Online Learning to Employers

  • Lower training costs: no travel or accommodation necessary
  • Less downtime: short webinars (60-90 minutes) and flexible training methods means less time away from work
  • Retain employees: keep staff who may be considering a qualification as full time study
  • Increase efficiency: improve your engineering or technical employees’ skills and knowledge
  • International insight: students will have access to internationally based professional instructors and students

 

How Does it Work?

EIT Online Learning courses involve a combination of live, interactive sessions over the Internet with a professional instructor, set readings, and assignments. The courses include simulation software and remote laboratory applications to let you put theory to practice, and provide you with constant support from a dedicated Learning Support Officer.


Practical Exercises and Remote Laboratories

As part of the groundbreaking new way of teaching, our online engineering courses use a series of remote laboratories (labs) and simulation software, to facilitate your learning and to test the knowledge you gain during your course. These involve complete working labs set up at various locations of the world into which you will be able to log to and proceed through the various practical sessions.

These will be supplemented by simulation software, running either remotely or on your computer, to ensure you gain the requisite hands-on experience. No one can learn much solely from lectures, the labs and simulation software are designed to increase the absorption of the materials and to give you a practical orientation of the learning experience. All this will give you a solid, practical exposure to the key principles covered and will ensure that you obtain maximum benefit from your course.

 

More about High Voltage Training

High voltage is described as any voltage exceeding 1000 V rms or 1000 V dc with current capability exceeding 2 mA ac or 3 mA dc, or for an impulse voltage generator having a stored energy in excess of 10 mJ. Anything over 50 V must be considered high voltage. Voltages over approximately 50 volts can usually cause dangerous amounts of current to flow through a human being touching two points of a circuit.

Growth in High Voltage Usage

Electricity is essential to modern life and all people are dealing with electricity directly or indirectly. Electricity is high-grade energy and working in the proximity of high voltage equipment involves danger. While commercial electricity has been around for over 100 years, the most common hazard of electricity has been electric shock or electrocution. As commercial electric systems grew, other hazardous effects such as arc-flash and arc-blast began to surface. The initiation, escalation, effects, and prevention of electrical arcs have been analyzed and researched since the early 1960’s. Human errors and equipment malfunctions contribute to the initiation of an electrical arc. Engineering design and construction of arc resistant equipment as well as requirements for safe work practices are continuing to target the risk of electrical arc-flash hazard. As the demand for electricity increases, transmission and distribution utility systems are being upgraded. Transformers are being upgraded or replaced with higher KVA ratings and lower impedances at both the utility and industrial/commercial level. Also, as the demand for higher reliability also increases, transformers are being operated in parallel by closing a tie breaker. All of these modifications to the system can cause dramatic increases in the available fault current. More electrical energy throughput is a result of these modifications; however the downside is an increase in the electrical current to feed a fault to existing equipment in industrial and commercial facilities that may now be under-rated to interrupt available fault current. This increase in available fault current can wreak havoc on under-rated and/or improperly maintained equipment.

Brochure

Brochure

To access the detailed program brochure, please complete this form.

 

The Engineering Institute of Technology (EIT) is dedicated to ensuring our students receive a world-class education and gain skills they can immediately implement in the workplace upon graduation. Our staff members uphold our ethos of honesty and integrity, and we stand by our word because it is our bond. Our students are also expected to carry this attitude throughout their time at our institute, and into their careers.

School of Electrical Engineering