Professional Certificate of Competency in Mechanical Engineering

Course at a Glance

Course Name - Professional Certificate of Competency in Mechanical Engineering

Course Code - CME

Qualification - Professional Development

Duration - 3 Months

CEU/CPD* - on enquiry

*CEU/CPD hours vary according to your professional body.

Contact a Course Advisor



  • Understand basic mechanical engineering concepts such as force, work, power, moments and torques
  • Identify the various balanced and unbalanced forces and loads in a system
  • Determine the importance of common engineering material properties in relation to component life and failure
  • Perform basic design for static strength
  • Apply the theory and principles governing the operation of common mechanical drive components
  • Select appropriate gears and bearings
  • Understand the underlying principles governing the operation of common mechanical prime movers and actuators
  • Distinguish between the various heat transfer mechanisms and understand the principles governing the design of heat-exchangers
  • Perform simple design and selection of piping systems and related components
  • Monitor, control and evaluate vibrations
  • Select the appropriate manufacturing system and understand the principles of design for manufacturing
  • Initiate and set up an effective but simple inspection and maintenance program (including lubrication)
  • Appreciate the need for standardisation and understand the common applicable mechanical standards and codes 


The next intake starts February 19, 2018.

Do not delay your opportunity to join this course. Contact us for more information and to apply.

Registrations closing February 12, 2018.

EIT Professional Certificate of Competency in Mechanical Engineering endorsed by the International Society of Automation (ISA)












This is an intensive course giving you the essentials of mechanical engineering.

Mechanical engineering, in simple terms, deals with any equipment that moves; this is what makes it perhaps the most broad and diverse of engineering disciplines. The mechanical discipline essentially derives its breadth from the need to design and manufacture everything from small (even nano) individual devices, such as measuring instruments, to large systems such as machine tools and power plants. Easy installation and serviceability are critical to the success of a mechanical system as is operational and design flexibility. Understanding parameters governing the selection and design of mechanical systems is essential for identifying suitable systems for a particular application.

In order to place all these issues in context, a good working knowledge of mechanical principles combined with a solid understanding of key concepts such as force, energy and heat is important. Mechanical power transmission is discussed from the point of view of gears, couplings and bearings. Proper selection and sizing of these critical mechanical components is vital to ensuring optimum performance and improved efficiency of a mechanical system. Recently, fluid engineering has undergone significant change and therefore a detailed overview of the underlying principles of fluid power and its applications is vital. The theory behind heat transfer, the various heat transfer mechanisms and the design of heat exchangers is also examined.

Any study of mechanical systems would be incomplete without including a review of mechanical vibrations. This will help you in monitoring, controlling and analyzing vibrations and in conducting fault diagnoses in mechanical systems. The field of maintenance has evolved into a separate and highly specialized function. An effective maintenance regime helps identify failure symptoms and enables initiation of corrective measures, for preventing unscheduled and sometimes catastrophic failures. Lastly, a discussion on the numerous standards, codes and regulations governing mechanical systems, helps put the whole course into perspective.

Course Outline

MODULE 1: Mechanical Engineering Basics

Introduction and basic concepts
Units for engineering quantities
Interpretation of mechanical drawings
Friction - importance in mechanical systems, types, static and dynamic friction coefficients

MODULE 2: Engineering Materials

Stress - strain relationship
Properties of engineering materials: strength, hardness, ductility and toughness
Thermal processing of metals and how it affects their properties
Ferrous and non-ferrous alloys
Common failure of modes of materials: Fracture, fatigue, creep and corrosion

MODULE 3: Mechanical Design

Basic principles
Factor of safety
Static equilibrium
Design for static strength
Threaded fasteners
Keys and keyways
Riveted joints
Design for fatigue strength

MODULE 4: Gears and Bearings

Gears: Terminologies, types, ratios and gear trains
Gear selection and gearboxes
Troubleshooting gear problems
Bearings: Loads, types, selection and troubleshooting
Installation guidelines

MODULE 5: Mechanical Drives

Belt and chain drives
Mechanical couplings
Hydrostatic drives
Hydrodynamic drives
Torque converters and fluid couplings
Clutches: Types, performance and selection
Brakes: Types, performance and selection

MODULE 6: Prime Movers

What is a prime mover?
Internal combustion engines
Electric motors
Hydraulic and air motors
Gas turbines
Mechanical variable speed drives
Hydraulic and pneumatic cylinders
Comparative merits/demerits of different prime movers
Primer mover selection criteria, applications

MODULE 7: Fluid Engineering

Concepts: Viscous flow and Reynolds number
Piping, selection and sizing
Pumps and valves: Types and applications
Fluid engineering symbols and diagrams
Analysis of piping systems
Seals, fittings, flanges gaskets and O-rings
Mechanical seals: Types, selection and maintenance

MODULE 8: Theory of Heat Transfer

Laws of thermodynamics
Thermal cycles
Heat exchangers: Types, maintenance and troubleshooting
Heat pumps
Air conditioning
Heat: Conduction, convection and radiation

MODULE 9: Mechanical Vibrations

Single degree of freedom system
Terminologies: Amplitude, phase and frequency
Natural frequency of vibration
Multiple degree of freedom system
Vibration measurement: sensors, analysers and interpretation
Use of vibration as a condition monitoring tool
Troubleshooting and correcting unwanted Vibrations

MODULE 10: Manufacturing and Production Systems

Metal production - foundry process
Cast making and metal melting
Die and precision casting
Heat treatment (hardening and softening)
Hot and cold working of metal
Numerical control
Machining and metal cutting
Broaching, shaping and sawing
Basics of welding and types of welded joints
Rapid prototyping

MODULE 11: Maintenance

Objectives, reliability and availability
Breakdown, preventive and predictive maintenance
Standard practices and tools
Factors influencing equipment downtime
Hazardous failures
Condition monitoring methods
Non-destructive testing and inspections
Planning and inspection schedules

UNIT 12: Mechanical Engineering Codes and Standards

Need for standardization
Mechanical engineering standards
Overview of standards
Benefits of standardization
ISO 9000/1

Learning and Teaching

Benefits of eLearning to Students

  • Cost effective: no travel or accommodation necessary
  • Interactive: live, interactive sessions let you communicate with your instructor and fellow students
  • Flexible: short interactive sessions over the Internet which you can attend from your home or office. Learn while you earn!
  • Practical: perform exercises by remotely accessing our labs and simulation software
  • Expert instructors: instructors have extensive industry experience; they are not just 'academics'
  • No geographical limits: learn from any location, all you need is an Internet connection
  • Constant support: from your instructor(s) and a dedicated Course Coordinator for the complete duration of the course
  • International insight: interact and network with participants from around the globe and gain valuable insight into international practice 

Benefits of eLearning to Employers

  • Lower training costs: no travel or accommodation necessary
  • Less downtime: short webinars (60-90 minutes) and flexible training methods means less time away from work
  • Retain employees: keep staff who may be considering a qualification as full time study
  • Increase efficiency: improve your engineering or technical employees’ skills and knowledge
  • International insight: students will have access to internationally based professional instructors and students


How Does it Work?

EIT eLearning courses involve a combination of live, interactive sessions over the Internet with a professional instructor, set readings, and assignments. The courses include simulation software and remote laboratory applications to let you put theory to practice, and provide you with constant support from a dedicated Course Coordinator.

Practical Exercises and Remote Laboratories

As part of the groundbreaking new way of teaching, our online engineering courses use a series of remote laboratories (labs) and simulation software, to facilitate your learning and to test the knowledge you gain during your course. These involve complete working labs set up at various locations of the world into which you will be able to log to and proceed through the various practical sessions.

These will be supplemented by simulation software, running either remotely or on your computer, to ensure you gain the requisite hands-on experience. No one can learn much solely from lectures, the labs and simulation software are designed to increase the absorption of the materials and to give you a practical orientation of the learning experience. All this will give you a solid, practical exposure to the key principles covered and will ensure that you obtain maximum benefit from your course.


Contact Our Course Advisors

Click here to contact us to receive assistance from our Course Advisors.

 Enquire abut our online engineering course fees


In Company Online Training Solutions

Special class groups can be arranged on request to match your own schedule. If you have a large number of staff who should complete any of our programs, read more about EIT's In Company Online Training HERE and contact us to assist you further.



To access the detailed program brochure, please complete this form.
EIT Course in Mechanical Engineering

Fee Information

Course Fees

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding courses fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.

Enquire abut our online engineering course fees


EIT Certificate Course Payment Information

Please contact us with your location for certificate fees in the relevant currency. Full payment is required between two (2) and four (4) weeks before the course starts.

Certificate fees include:

  • All live webinars with a professional instructor
  • Four (4) technical manuals (as searchable eBooks)
  • Course materials, including recordings of the live online sessions
  • Software
  • Assignments, and
  • Ongoing support from a dedicated Course Coordinator

All you need to participate is an Internet connection, a computer, speakers and, if possible, a microphone.


Fee concessions may apply for multiple bookings on our certificate courses.

For a rapid reply to your query regarding courses fees and payment options, please contact us and we will respond within two (2) business days.

Enquire abut our online engineering course fees 

Related Courses

Courses available in EIT's School of Mechanical Engineering

Mechanical Engineering encompasses the conceptualization, design, manufacture, control and maintenance of machines ranging from a conveyer, space shuttle to nanotechnology based objects. In broad terms, mechanical engineering channels the energy and forces in nature to the service of people. The fields in which mechanical engineering professionals operate are wide - ranging from oil and gas, power generation, water utilities, process plants, mining, pharmaceuticals, manufacturing and defence.

A diploma in mechanical engineering is ideal for anyone wanting to get involved in the general engineering (whether design or maintenance) of large plants, especially as a plant engineer. Recently, mechanical engineering has begun to include many new systems in the electronics and control arena such as programmable logic controllers (PLCs) and SCADA as these are critical to the control of mechanical devices.

Students in the Engineering Institute of Technology (EIT) School of Mechanical Engineering can study an Advanced Diploma of Mechanical Engineering with subjects that include: mechanics, structural engineering, drive systems, rotating equipment, hydraulics, pneumatics, lubrication engineering, HVAC, pumps, compressors, machinery safety, energy efficiency and renewable energy sources. The short courses that form part of EIT's professional development series are designed to provide students with critical knowledge and practical tools that can be immediately applied to the workplace. They are ideal to up-skill and/or cross-skill in a particular area or technology.

The focus in EIT's School of Mechanical Engineering is in providing students with both deep and broad skills in mechanical engineering technology, focusing on real systems. Whilst there is probably not a shortage of theoretically orientated practitioners in mechanical engineering, there is a need for highly skilled, practically oriented engineers, technologists and technicians, due to the rapidly increasing use of new technologies which are becoming a key component of all modern plants and equipment. Studying our mechanical engineering courses online means you do not have to take extended periods away from existing work commitments.

Reviews & Frequently Asked Questions

Here is what some of our past students have said about this course:

"I think online courses are just as engaging, more motivating and much more convenient than face-to-face courses" C. Jardin (USA)

"I wish I did this course 5 years ago" R. Omoro (South Africa)

"I love this course work and the format of your training. I have completed many hours of distance learning, I actually received my Bachelor’s degree through distance learning (University of Phoenix) and I must say your format is far superior. The ability to have the lecture live with the instructor is a huge benefit. My only regret is not taking the refresher course on math, physics and chemistry. My math is very strong but I had to spend many hours refreshing myself on the kinematics equations and physics of motion but in the end it was very valuable re-learning all of this. I feel the education the EIT provides is superior to all distance education and at times is far superior to many of the in class coursework I have completed at local Universities. I look forward to attending many more courses" M. Knights (USA)

Read more amazing student stories here.

You can also click here to view our Frequently Asked Questions.